Code No: F-15418/BL

FACULTY OF SCIENCE

B.A./B.Sc. (CBCS) V - Semester (Backlog) Examination, May/June 2024

Subject: Mathematics Paper - V: Linear Algebra

Max. Marks: 80

Time: 3 Hours

PART - A

(8x4=32 Marks)

Note: Answer any Eight questions.

- 1. Show that the set of all matrices $H = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} | a, b, c, d \in R \right\}$ is a subspace of the vector space M_{2x2}(R) of all 2 x 2 matrices with real entries.
- 2. If $\begin{bmatrix} 3 \\ -4 \end{bmatrix} = a \begin{bmatrix} 3 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, then find $\begin{bmatrix} a \\ b \end{bmatrix}$.
- 3. Show that the set $S = \{1, x+1, x^2+2\}$ is a basis of the vector space of all polynomials $p_2(R)$ of degree less than or equal to 2.
- 4. Find the rank of the matrix $A = \begin{bmatrix} 3 & 4 & 6 & 8 \\ 2 & 6 & 10 & 12 \\ 4 & 7 & 11 & 12 \end{bmatrix}$
- 5. If the null space of a 8 x 5 matrix A is 2-dimensional, then find the dimension of the row space
- 6. Find the eigen vectors of the matrix $A = \begin{bmatrix} 1 & -1 \\ 5 & 7 \end{bmatrix}$.
- 7. Show that the mapping defined by $T: P_2(R) \to R^2$ defined by $T(p) = \begin{bmatrix} p(0) \\ p(1) \end{bmatrix}$ is a linear transformation. (Here $p(t) = a_0 + a_1t + a_2t^2$, $a_0, a_1, a_2 \in R$)
- 8. Find the eigen values of the matrix $A = \begin{bmatrix} 0 & 1 \\ -8 & 4 \end{bmatrix}$.
- 9. Find the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T \begin{vmatrix} a \\ b \end{vmatrix} = \begin{vmatrix} a \\ a+b \\ b+c \end{vmatrix}$ with respect to

the basis
$$B = \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$
 of the vector space $R^3(R)$.

10. If
$$u = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$$
 and $v = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}$ then find $u.v$ and $||u+v||$.

11. If
$$y = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 and $u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, then find the orthogonal projection of y onto u .

12. Let W be a subspace of the vector space $R^n(R)$. Show that the set $W^\perp = \{x \in R^n \mid x. u = 0 \text{ for all } u \in W \}$ is a subspace of R^n .

PART - B

Note: Answer all the questions.

(4 x 12 = 48 Marks)

13.(a) Find bases of the Null space and the Column space of the matrix

$$A = \begin{bmatrix} 1 & 5 & -4 & -3 & 1 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

OR

- (b) (i) Let $B = \{b_1, b_2, ..., b_n\}$ be basis of vector space V. Then show that for each $x \in V$ there exists a unique set of scalars $c_1, c_2, ..., c_n$ such that $x = c_1b_1 + c_2b_2 + ... + c_nb_n$.
 - (ii) Show that the set $S = \left\{ \begin{bmatrix} 3 \\ 6 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \end{bmatrix} \right\}$ is a linearly dependent set in the vector space $R^2(R)$.
- 14. (a) State and prove rank theorem.

(b) Find the eigen vectors of the matrix $A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix}$.

15. (a) Show that an n x n matrix A is diagonalizable if and only if A has n linearly independent eigen vectors.

(b) Construct the general solution of x' = Ax where $A = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$.

- 16.(a) (i) If u and v are vectors in the vector space R^n , show that $\|u+v\|^2 + \|u-v\|^2 = 2(\|u\|^2 + \|v\|^2)$.
 - (ii) If $S = \{u_1, u_2, ..., u_p\}$ is an orthogonal set of non zero vectors in R'', then show that S is linearly independent.

(b) Using Gram Schmidt process, construct an orthogonal basis for the subspace W of R4

spanned by the vectors
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 0 \end{bmatrix}$$
 and $v_3 = \begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \end{bmatrix}$.

FACULTY OF SCIENCE

B.A./B.Sc. (CBCS) V- Semester Examination, December 2023/January 2024

Subject: Mathematics Paper-V: Linear Algebra

Time: 3 Hours

PART - A

Max. Marks: 80

Note: Answer any eight questions.

(8x4= 32 Marks)

- 1. Prove that the intersection of two subspaces is again a subspace.
- 2. Verify whether the set {(1,1,2) (2,2,4) (1,3,4)} is linearly independent.
- 3. If a vector space V has a basis set $B = \{b_1, b_2, \dots b_n\}$ then prove that any set in V containing more than n vectors must be linearly dependent.
- 4. Find the eigen values of $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$.
- 5. Find the smallest possible dimensions of nul A, given that A is of 3×7 matrix.
- 6. Prove that eigen values of matrix A and it's transpose A^T are the same.
- 7. Mention under what condition the given matrix is diagonalizable.
- 8. If $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$ then find eigen values and a basis for each eigen space in C^2 .
- 9. Suppose $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$ then find A^4 given that $A = PDP^{-1}$, where $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and

$$D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}.$$

10. Show that the set vectors $\{u_1, u_2, u_3\}$, where

$$u_1 = \left[\frac{3}{\sqrt{11}}, \frac{3}{\sqrt{11}}, \frac{3}{\sqrt{11}}\right]^T \text{, } u_2 = \left[\frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right]^T \text{, } u_3 = \left[\frac{-1}{\sqrt{66}}, \frac{-4}{\sqrt{66}}, \frac{7}{\sqrt{66}}\right]^T \text{ are orthogonal.}$$

- 11. Prove that two vectors u and v are orthogonal if and only if $||u+v||^2 = ||u||^2 + ||v||^2$.
- 12. In an inner product space, prove that any orthogonal set of non-zero vectors is linearly independent.

PART - B

Note: Answer all the questions.

(4x12= 48 Marks)

13. (a) (i) Prove that the column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

(ii) If
$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$
, if column space of A and the null space of A are

subspaces of \mathbb{R}^k . Then find the value of k.

(OR)

(b) (i) Find the dimension of the null space and the column space of

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

(ii) If a vector space V has a basis of n vectors, then prove that every basis of V must contain exactly n vectors.

14. (a) (i) Find bases for the row space, the column space and the null space of the matrix

(i) Find bases for the row space;
$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 1 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$
(OR)

- (b) State and prove Rank theorem.
- 15. (a) Diagonalize the matrix $A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$ if possible. (OR)
 - (b) Suppose $A = \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix}$ then find the eigen values of A and find a basis for each eigen space.
- 16. (a) State and prove orthogonal decomposition theorem.
 (OR)
 - (b) Explain the Gram-Schmidt process.

FACULTY OF SCIENCE

B.A. / B.Sc. (CBCS) V - Semester Examination, December 2022 / January 2023

Subject: Mathematics Paper – V : Linear Algebra

Max. Marks: 80

Time: 3 Hours

PART - A

 $(8 \times 4 = 32 \text{ Marks})$

Note: Answer any eight questions.

1. Define a vector space and given an example of vector space.

2. Prove that the intersection of two sub spaces is again a subspace.

3. If $A = \begin{bmatrix} 6 & -4 \\ -3 & 2 \\ -9 & 6 \end{bmatrix}$ then find Null space of A.

4. Find the eigen values of $A = \begin{bmatrix} 6 & 8 \\ 8 & -6 \end{bmatrix}$.

5. Find rank of a matrix having order 4×7 with 4 –dimesnional null space.

6. If λ is an eigen value of an invertible matrix A, then porve that $\frac{1}{\lambda}$ is an eigen value of the matrix A^{-1} .

7. Is every matrix diagonalizable? Mention the condition for the given matrix to be diagonalizable.

8. Find the eigen values and a basis for each eigen space in c^2 for $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$.

9. Prove than an $n \times n$ matrix with n distinct eigen values is diagonalizable.

10. If $u = [2, -5, -1]^T$ and $v = [3, 2, -3]^T$ then find the inner product of u and v.

11. If u, v are two vectors. Then prove that two vectors, u, v are orthogonal if and only if $||u - v||^2 = ||u||^2 + ||v||^2$.

12. Prove that, in an inner product space, any orthogonal set of non-zero vectors is linearly independent.

PART - B

Note: Answer all the questions.

 $(4 \times 12 = 48 \text{ Marks})$

- 13. (a) (i) Given V_1 and V_2 in a vector space V. Let $H = span \{V_1, V_2\}$ then show that H is a subspace of V.
 - (ii) Prove that the null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

(OR)

(b)(i) Find a spanning set for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

(ii) Let $\beta = \{b_1, b_2, ..., b_n\}$ be a basis for a vector space V. Then prove that for each $x \in V$ there exists a unique set of scalars $c_1, c_2, ..., c_n$ such that $x = c_1b_1 + c_2b_2 + \cdots + c_nb_n$.

14. (a) (i) State and prove Rank theorem.

(ii) Let $b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ $b_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$ $c_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$ $c_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$ and consider the bases for R^2 given by $B = [b_1, b_2]$ and $c = [c_1, c_2]$ then find the change of coordinates matrix from B to C

(b) (i) If $V_1, V_2, ..., V_r$ are eigen vectors that correspond to distinct eigen values $\lambda_1, \lambda_2 \dots, \lambda_r$ of an $m \times n$ matrix A, then prove that the set $\{V_1, V_2 \dots V_r\}$ is linearly independent.

(ii) Find the characteristic equation of $A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- 15. (a) Diagonalize the matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$ if possible.
 - (b) Suppose $B = [b_1, b_2]$ is a basis for V and $C = [c_1, c_2, c_3]$ is a basis for W. Let $T: V \to W$ be a linear transformation with the property that $T(b_1) = 3c_1 - 2c_2 + 5c_3$ and $T(b_2) = 4c_1 + 7c_2 - c_8$. Then find the matrix M for T relative to B and C.
- 16. (a) Suppose A is $m \times n$ matix. Then prove that the orthogonal complement of the row space of A is the null space of A and the orthogonal complement of the coloumn space of A is the null space of A^T .

(OR)

(b) Explain the Gram Schmidt Process.

FACULTY OF SCIENCE B.Sc./ BA V Semester (CBCS) Examination, March 2022

Subject: Mathematics Paper - V : Linear Algebra

Max. Marks: 80

Time: 3 Hours

PART - A

 $(8 \times 4 = 32 \text{ Marks})$

Note: Answer any eight questions.

1. Determine whether the Set S = $\{v_1, v_2, v_3,\}$ is a basis of \mathbb{R}^3 , where

$$v_1 = \begin{bmatrix} 3 \\ 0 \\ -6 \end{bmatrix} \quad v_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix} \quad v_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}.$$

2. Prove that intersection of two subspaces is again a subspace.

3. Find the dimension of the subspace H spanned by

4. If a 7x5 matrix A has rank 2, Find dim Nul A,

5. If
$$\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
 an eigen vector of $\begin{bmatrix} -4 & 3 & 3 \\ 2 & -3 & -2 \\ 1 & 0 & -2 \end{bmatrix}$ then, find eigen value.
6. Find the characteristic polynomial of A = $\begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ 1 & 0 & 2 \end{bmatrix}$

7. Show that an nxn matrix with n distinct eigen values is diagonalizable.

8. Let $T: V \to W$ be a linear transformation with $T(b_1) = 3c_1 - 2c_2 + 5c_3$ and $T(b_2)=4c_1+7c_2-c_3$. Find the matrix M for T relative to bases $B=\{b_1,b_2\}$ and $c = \{c_1, c_2, c_3\}$ for vector spaces V and W.

9. Find the complex eigen values of $A = \begin{bmatrix} 0 & 5 \\ -2 & 2 \end{bmatrix}$.

10. Find a unit vector in the direction of (1, -2, 2, 0).

11. Determine if $\{u_1, u_2, u_3\}$ is an orthogonal set, where $u_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$

12. Let $y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of y onto u.

 $(4 \times 12 = 48 \text{ Marks})$

Note: Answer any four questions.

13. State and prove spanning set theorem.

14. Define nul space and find basis for the nul space of matrix

$$A = \begin{bmatrix} 1 & 1 & -2 & 1 & 5 \\ 0 & 1 & 8 & -1 & -2 \\ 0 & 1 & 0 & -1 & 14 \end{bmatrix}$$

15. State and prove rank theorem.

16. Find eigen values and eigen vectors of $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$.

17. Compute A^6 , where $=\begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$ using $A = PDP^{-1}$

18. Construct general solution of x' = Ax where $A = \begin{bmatrix} -3 & 2 \\ -1 & -1 \end{bmatrix}$.

19. If $S = \{u_1, u_2, \dots, u_p\}$ is orthogonal set of non zero vectors in \mathbb{R}^n , then prove that S is linearly independent and hence is a basis for subspace spanned by S.

20. Let W be the subspace spanned by the set $S = \{x_{1}, x_{2}, x_{3}\}$ where

$$x_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 3 \end{bmatrix} \qquad x_2 = \begin{bmatrix} -5 \\ 1 \\ 5 \\ -7 \end{bmatrix} \qquad x_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 8 \end{bmatrix}. \text{ Now Construct an orthogonal basis for W.}$$

B.Sc. V Semester (CBCS) Examination, July 2021 FACULTY OF SCIENCE

Subject: Mathematics Paper: V – Linear Algebra

Max. Marks: 60

Time: 2 Hours

 $(4 \times 5 = 20 \text{ Marks})$

Note: Answer any four questions.

Prove that intersection of a subspace is again a subspace.

1 Prove that intersection of a subspace is again.

2 Determine if
$$v = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$
 is in col A, where $A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$.

3 Determine if $\{v_1, v_2, v_3\}$ is basis for R³, where $v_1 = \begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix}$, $v_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}$, $v_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$

4 Let $B = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$ be bases for a vector space V and suppose $b_1 = 6c_1 - 2c_2$ and $b_2 = 9c_1 - 4c_2$. Then find change of coordinate matrix B to C.

5 Find the complex Eigen values of the matrix A =

6 Compute A⁴ where P = $\begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $A = PDP^{-1}$.

7 Compute IIu+vII where $u = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$, $v = \begin{bmatrix} -7 \\ -4 \end{bmatrix}$.

8 Find a unit vector in the direction of $v = \begin{vmatrix} 4 \end{vmatrix}$.

PART - B

Note: Answer any two questions.

 $(2 \times 20 = 40 \text{ Marks})$

9 Define Null space and find spanning set for the Null space of given matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

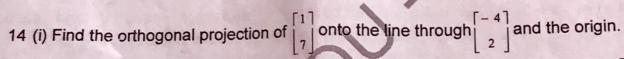
10 If a vector space V has a basis $\beta = \{b_1, b_2, \dots b_n\}$ then show that any set in V containing more than n vectors must be linear dependent.

11 State and prove that Rank theorem. Also find rank A, where $A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}$

12 Prove $\lambda = 4$ is an Eigen value of $A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$ and find the corresponding Eigen

vector and characteristic equation of A.

13 Diagonalize $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$, if possible.



(ii) Determine if the set $\{u, v, w\}$ is orthogonal set. Given $u = \begin{bmatrix} -1 \\ 4 \\ -3 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ w = \begin{bmatrix} 3 \\ -4 \\ -7 \end{bmatrix}$.

FACULTY OF SCIENCE B.Sc. V Semester (CBCS) Examination, November / December 2021

Subject: MATHEMATICS Paper: V - Linear Algebra

Max. Marks: 60

Time: 2 Hours

PART - A

 $(4 \times 5 = 20 \text{ Marks})$

Note: Answer any four questions.

- 1 Prove that $H = \begin{cases} s \\ t \end{cases}$: s, t are real is a subspace of \mathbb{R}^3 .
- Determine if $\{v_1, v_2, v_3\}$ is L.D or L.I, where $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.
- Find the dimension of the subspace H of R² spanned by $\begin{bmatrix} 1 \\ -5 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 10 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 15 \end{bmatrix}$.
- Let $b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and $\beta = \{b_1, b_2\}$. Find the coordinate vector $[x]_{\beta}$ of xrelative to β .
- Diagonalize A, where $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$ and $v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ are Eigen vectors of A.
- Compute distance between $u = \begin{vmatrix} 0 \\ -5 \\ 2 \end{vmatrix}$ and $v = \begin{vmatrix} -4 \\ -1 \\ 8 \end{vmatrix}$.
- 8 Suppose y is orthogonal to vectors u and v, then show that y is orthogonal to u + v.

PART - B

Note: Answer any two questions.

 $(2 \times 20 = 40 \text{ Marks})$

Show that H=span $\{\nu_1, \nu_2\}$ is a subspace of a vector space V and determine if

$$W = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \text{ is subspace spanned by } \{v_1, v_2, v_3\} \text{ where } V_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, V_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, V_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}.$$

10 Let $\beta = \{b_1, b_2, ..., b_n\}$ be basis for vector space V. Then show that the coordinate mapping $x \to [x]_{\beta}$ is 1-1 linear transformation from V on to R^n .

11 If two matrices A and B are row equivalent, then show that their row spaces are the

If two matrices A and B are row equivalent,
$$\frac{1}{3}$$
, $\frac{3}{4}$, $\frac{4}{-1}$, $\frac{2}{2}$ same. Also find dim Row A, where A=
$$\begin{bmatrix} 1 & 3 & 4 & -1 & 2 \\ 2 & 6 & 6 & 0 & -3 \\ 3 & 9 & 3 & 6 & -3 \\ 3 & 9 & 0 & 9 & 0 \end{bmatrix}$$

12 Find eigen values and eigen vectors of A=

13 Diagonalize A=
$$\begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$
, if possible.

- 14 (i) Prove that two vectors u and v are orthogonal iff $||u+v||^2 = ||u||^2 + ||v||^2$.
 - (ii) Determine if the set $\{u,v\}$ is orthogonal. If so, find the orthonormal set. Given

$$u = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \ v = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix}$$